Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38001863

RESUMO

In recent years, there has been a focus on breeding wheat with high anthocyanin levels in order to improve food quality and human health. The objective of this study was to examine the antioxidant and geroprotective properties of wheat bran extracts using both in vitro and in vivo research methods. Two wheat lines were used: one with uncolored pericarp (anthocyanin-free) and another with colored pericarp (anthocyanin-containing). These lines differed in a specific region of chromosome 2A containing the Pp3/TaMyc1 gene, which regulates anthocyanin production. High-performance liquid chromatography-mass spectrometry revealed the presence of cyanidin glucoside and cyanidin arabinoside in the anthocyanin-containing wheat bran extract (+AWBE), while no anthocyanins were found in the anthocyanin-free wheat bran extract (-AWBE). The +AWBE showed higher radical scavenging activity (DPPH and ABTS assays) and membrane protective activity (AAPH oxidative hemolysis model) compared to the -AWBE. Both extracts extended the lifespan of female Drosophila, indicating geroprotective properties. This study demonstrates that wheat bran extracts with high anthocyanin levels have antioxidant and geroprotective effects. However, other secondary metabolites in wheat bran can also contribute to its antioxidant and geroprotective potential.

2.
Foods ; 11(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36010514

RESUMO

The total phenolic content, phenolic compositions, and antioxidant capacity in the grain of 40 purple wheat genotypes were studied. In this study, purple wheats were investigated in terms of their composition of free and bound phenolic acids and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. The free phenolic content ranged from 164.25 to 271.05 mg GAE/100 g DW and the bound phenolic content was between 182.89-565.62 mg GAE/100 g wheat. The total phenolic content of purple wheat samples ranged from 352.65 to 771.83 mg GAE/100 g wheat. Gallic acid, protocatechuic acid, catechin, 4-hydroxybenzoic acid, syringic acid, ellagic acid, m-coumaric acid, o-coumaric acid, chrysin, caffeic acid, p-coumaric acid, ferulic acid, quercetin, kaempferol, rutin, sinapic acid, and chlorogenic acid were detected by HPLC system. Gallic acid, benzoic acid derivatives, and dominant phenolics, which are frequently found in cereals, were also dominant in purple wheat samples and were found in free fractions. The antioxidant capacity was assessed using the DPPH method. The antioxidant capacity (AA%) in the free phenolic extracts of the purple wheats was between 39.7% and 59.5%, and the AA% values of bound phenolic extract of the purple wheat varied between 42.6% and 62.7%. This study suggested that purple wheat samples have high phenolic compound content as antioxidant potential and therefore consumption of purple wheat-containing food products may provide health benefits.

3.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577050

RESUMO

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


Assuntos
Cromatografia Líquida , Espectrometria de Massas em Tandem , Terpenos , Triticum
4.
BMC Plant Biol ; 19(Suppl 1): 52, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813902

RESUMO

BACKGROUND: Anthocyanins are plants secondary metabolites important for plant adaptation to severe environments and potentially beneficial to human health. Purple colour of barley grain is caused by the pigments synthesized in pericarp. One or two genes determine the trait. One of them is Ant2 mapped on chromosome 2HL and is known to encode transcription factor (TF) with a bHLH domain. In plants, bHLH regulates anthocyanin biosynthesis together with TF harboring an R2R3-MYB domain. In wheat, the R2R3-MYBs responsible for purple colour of grain pericarp are encoded by the homoallelic series of the Pp-1 genes that were mapped on the short arms of chromosomes 7. In barley, in orthologous positions to wheat's Pp-1, the Ant1 gene determining red colour of leaf sheath has been mapped. In the current study, we tested whether Ant1 has pleiotropic effect not only on leaf sheath colour but also on pericarp pigmentation. RESULTS: А set of near isogenic lines (NILs) carrying different combinations of alleles at the Ant1 and Ant2 loci was created using markers-assisted backcrossing approach. The dominant alleles of both the Ant1 and Ant2 genes are required for anthocyanin accumulation in pericarp. A qRT-PCR analysis of the Ant genes in lemma and pericarp of the NILs revealed that some reciprocal interaction occurs between the genes. Expression of each of the two genes was up-regulated in purple-grained line with dominant alleles at the both loci. The lines carrying dominant allele either in the Ant1 or in the Ant2 locus were characterized by the decreased level of expression of the dominant gene and scant activity of the recessive one. The Ant1 and Ant2 expression was barely detected in uncolored line with recessive alleles at both loci. The anthocyanin biosynthesis structural genes were differently regulated: Chs, Chi, F3h, Dfr were transcribed in all lines independently on allelic state of the Ant1 and Ant2 genes, whereas F3'h and Ans were activated in presence on dominant alleles of the both regulatory genes. CONCLUSIONS: The R2R3-MYB-encoding counterpart (Ant1) of the regulatory Ant2 gene was determined for the first time. The dominant alleles of both of them are required for activation of anthocyanin synthesis in barley lemma and pericarp. The R2R3-MYB + bHLH complex activates the synthesis via affecting expression of the F3'h and Ans structural genes. In addition, positive regulatory loop between Ant1 and Ant2 was detected. Earlier the interaction between the anthocyanin biosynthesis regulatory genes has been revealed in dicot plant species only. Our data demonstrated that the regulatory mechanism is considered to be more common for plant kingdom than it has been reported so far.


Assuntos
Antocianinas/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Repetições de Microssatélites/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
5.
BMC Plant Biol ; 16(Suppl 3): 245, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28105957

RESUMO

BACKGROUND: Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). RESULTS: 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. CONCLUSIONS: Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.


Assuntos
Clorofila/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Transcriptoma , Núcleo Celular/genética , Clorofila/biossíntese , Hordeum/citologia , Fotossíntese , Reação em Cadeia da Polimerase , Análise de Sequência de RNA
6.
Molecules ; 19(12): 20266-79, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25486242

RESUMO

Bread wheat producing grain in which the pericarp is purple is considered to be a useful source of dietary anthocyanins. The trait is under the control of the Pp-1 homoealleles (mapping to each of the group 7 chromosomes) and Pp3 (on chromosome 2A). Here, TaMyc1 was identified as a likely candidate for Pp3. The gene encodes a MYC-like transcription factor. In genotypes carrying the dominant Pp3 allele, TaMyc1 was strongly transcribed in the pericarp and, although at a lower level, also in the coleoptile, culm and leaf. The gene was located to chromosome 2A. Three further copies were identified, one mapping to the same chromosome arm as TaMyc1 and the other two mapping to the two other group 2 chromosomes; however none of these extra copies were transcribed in the pericarp. Analysis of the effect of the presence of combinations of Pp3 and Pp-1 genotype on the transcription behavior of TaMyc1 showed that the dominant allele Pp-D1 suppressed the transcription of TaMyc1.


Assuntos
Antocianinas/biossíntese , Triticum/metabolismo , Alelos , Sequência de Aminoácidos , Mapeamento Cromossômico , Dosagem de Genes , Ordem dos Genes , Genes de Plantas , Genes myc , Loci Gênicos , Genótipo , Dados de Sequência Molecular , Fenótipo , Filogenia , Característica Quantitativa Herdável , Alinhamento de Sequência , Transcrição Gênica , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...